

7.9. Different Points-to Analysis

Benchmark VTA Approach 3

Pot Def Pot Def

DR Flds DR Flds DR Flds DR Flds

RollerCoaster 0 0 0 0 0 0 0 0

AutoBanking 0 0 0 0 0 0 0 0

MTRT 300 22 996 54 1074 64 6 1

SPECJbb - - - - 1814 104 2 1

Barrier 0 0 6 3 6 3 0 0

Sync 0 0 66 3 10 2 24 1

ForkJoin 0 0 0 0 0 0 0 0

CryptSizeA 0 0 0 0 0 0 0 0

LUFact 0 0 0 0 0 0 0 0

SOR 0 0 0 0 0 0 0 0

SparseMatmult 0 0 0 0 0 0 0 0

MolDyn 0 0 30514 54 30503 53 11 1

MonteCario 89 6 963 38 997 39 1 1

RayTracer 0 0 6367 18 2589 17 4 1

BufferSingle 0 0 1 1 0 0 1 1

BufferSingleSy 0 0 0 0 0 0 0 0

BufferMultiple 0 0 5 1 0 0 5 1

BufferMultipleSy 0 0 0 0 0 0 0 0

TwoThreads 0 0 0 0 0 0 0 0

Table 7.7: Approach 3 vs. VTA

We can see in Table 7.7 that for benchmarks MTRT, Barrier, Sync, MolDyn,

MonteCarlo and RayTracer there is an increase in the number of definite data races.

Actually, many data races that are detected as potential data races by our first three

approaches are pointed out as definite data races by the VTA analysis. This situation

is produced because the VTA analysis is less accurate than a field-sensitive Points-to

analysis, and is unable to rule out certain situations where allocation nodes of the

112

7.9. Different Points-to Analysis

same type represent different runtime objects.

In the benchmarks we could also see that when using VTA Spark is less able

to detect which classes belong to the application and which ones belong to the Java

library. Many of the VTA benchmarks pointed out that sorne other threads were being

started: sun.security.provider.SeedGenerator$ThreadedSeedGenerator$BogusThread

and sun.security.provider.SeedGenerator$ThreadedSeedGenerator. These threads are

created because the CalI Graph built from the VTA information is less accurate than

the Spark's default; there are, however, no detected data races produced by these

threads.

Barrier

The three fields involved in the definite data races by the VTA analysis are threads

fields which could never produce a data race. But, since the VTA analysis instead

of allocation nodes uses classes, then, it does not matter if the threads are different

instances, they are the same object because they have the same class.

Sync

Each thread instance of SyncObjectRunner and SyncMethodRunner is created with

an instance of CounterClass. An SyncObjectRunner instances use the same

CounterClass instance and the SyncMethodRunner instances use another

CounterClass instance. For the VTA analysis these different CounterClass instances

are the same object since they have the same class. Due to this each thread, including

the Main thread, has a definite data race with each other. Due to the thread cre­

ation pattern used by this benchmark the fields SyncOb j ectRunner: int size and

SyncOb j ectRunner : CounterClass cont are detected as being involved in definite

data races between the Main thread and the SyncObjectRunner instances.

MolDyn

AIl fields detected as potential data races by the Allocation node uniqueness analysis

are detected as definite data races by the VTA approach. These fields are divided in

113

7.10. Conclusions

two sets, moldyn.mdRunner fields and moldyn.particle. The first data races were

ruled out by the Replicated Thread-aware analysis and the second by the Allocation

no de uniqueness approach, but for VTA analysis each of these objects is considered

unique due to its type, thus detecting all this anomalies as definite data races.

MonteCarlo

The number of fields involved in data races is bigger for VTA; this is, however, due

to the fact that the same 2 fields are repeated in potential and definite data races

montecarlo.Universal: boolean DEBUG,

java.lang.String prompt.

RayTracer

montecarlo.Universal:

All field involved in definite or potential data races for the other analyses are pointed

out as definite data races by the VTA analysis, again due the problems in differenti­

ating instances of the same classes.

7.10 Conclusions

The above experimental results and analyses demonstrate the following key points .

• The performance of the analysis depends not only on one feature but in a

set of three: statement reached, dependencies detected and inter-procedural

application complexity. The last point is the most important; components of

our analysis, such as Monitor Protection analysis are full blown Forward Inter­

procedural analysis, and the intricacy and depth of call chains is a major source

of performance concerns .

• The Application Only analysis is much faster that the Library analysis. How­

ever, it is not as accurate as the latter. Application Only analysis is suitable

for getting a general and rapidly-generated idea of the synchronization strategy

114

7.10. Conclusions

of the application, but in order to accurately find data races in the application

the Whole Program analysis is much better.

• A very important percentage of the potential data races are shared by many

benchmarks. These potential data races can be largely attributed to the con­

servative inaccuracy of the Points-to analysis. If we had a full, context sensitive

PTA which would model the complete stack for each call most of these data

races would not be detected. Unfortunately, this sort of context-sensitivity is

prohibitively expensive from a performance point of view.

• As we previously saw the implementation of the Call Graph built on top of

the Points-to Analysis is also important for directing the application through

the inter-procedural structure. Conservative inaccuracy easily results in large

portions of the application which should not be reached triggering the detection

of false positive data races.

• The implementation of different Points-to analyses directly impacts the depen­

dency analysis. A thread-unaware analysis is not capable of differentiating be­

tween different threads thus answering that two objects have the same allocation

sites wh en really they are created by different threads.

• In the VTA approach many data races that are detected as potential data

races by the three approaches previously described are pointed out as definite

data races by the VTA analysis. This situation is produced because the VTA

analysis is less accurate than a field-sensitive Points-to analysis, making the

analysis unable to rule out certain situations because allocation nodes that

represent different runtime objects of the same type are collapsed into a single

representative.

• The Data Race Detection implementation is very accurate for definite data

races, with sorne easily detectable false positives.

• Large programs as seen in the benchmarks can be handled by the analysis and

performance is acceptable.

115

8.1 Conclusions

Chapter 8

Conclusions and Future Work

This thesis introduced XTHREAD, a Java multithreaded application analysis frame­

work. The main objective of this thesis is to contribute to the developer toolkit by

enhancing the abstractions they use to express their concurrency analysis. We closed

the semantic gap between the problem domain and its computational representation.

When this breach is shortened the abstractions in the model closely resemble the

entities in the problem domain, we provided the user with a language very similar

to the one he uses for thinking then everything is much more clear for him and the

translations he has to do are not trivial but easy.

What we are personally proud of achieving in this thesis are the abstractions,

runtime objects, representations viewpoints and sets, for instance. We are talking

the same language as the researcher.

8.1.1 Points of view

The framework provides an implementation which uses the Points-to analysis called

SPARK [Lho02], and the Call graph derived from it. The XTHREAD default imple­

mentation works by using Soot's [SHR+OO, VROO] translation from Java bytecode

to Jimple [VRH] and tools like the Hierarchy abstraction. Although, any other tool

116

8.1. Conclusions

could be used instead of Soot, a considerable amount of work should be done in order

to adapt the XTHREAD abstractions fulfilling the required behaviour.

Besides these tools the different Domains or points of view over an application

can be customized for providing other tools useful for the analysis being developed.

This behaviour can be achieved by configurating a Domain for using different tools.

8.1.2 Multithreaded Application Representation

In the Experimental Results Chapter we could see the representation behaviour for

modelling multithreaded applications. The abstractions provided by the framework

proved to be flexible enough to handle completely different benchmarks with different

thread creation points, number of thread started and flow of data.

8.1.3 Analyses

• Different implementations are provided for addressing the different analyses

needs; walkers, intra-procedural analyses inter-procedural analyses.

• The results obtained by the Data Race detection analysis were very accurate

and were comparable to other approaches, even though these analyses were

enhanced by using dynamic approaches.

• A Composite construction is encouraged in order to simplify each analysis to

it minimal requirements and build complex analysis by composing the simple

ones.

• The framework can analyze large programs and the performance of such analy­

ses is acceptable. This is possible because the framework did not avoid special

cases and, when possible, generalizes them in order to provide a proper ab­

straction for a better understanding of the situation. An example of this is the

different thread st art methodologies provided by Java abstracted in the St art­

ThreadStmt. The user can further extend the framework by implementing other

generalization abstractions.

117

8.2. Future Work

• As we could see in Chapter 7, the modularization and abstractions provided by

the framework allow the user to change a part of the concurrency analysis and

test the impact of such modification without disturbing the rest of the analysis

behaviour. Due to this we could fairly easily change the Points-to analysis

implementation to measure the impact. We could also modify the Runtime

Object comparison implementation in the three approaches for improving the

Data Race detection analysis accuracy.

The framework has shown a very good capability for helping the programmer by pro­

viding high level abstractions and keeping the implementations concerns encapsulated

in the provided solutions thus reducing the time of analysis development.

8.2 Future Work

One of the first objectives for this thesis was to provide a black box framework [JF88],

however, developing a robust black box framework takes several years and several

us ers developing with it, finding new abstractions and improving the existing ones,

enlarging the set of analyses provided by the tool. In order to reach this point in

the XTHREAD framework life cycle we will need different researcher developing their

analysis with this tool, and perhaps after a few years we will reach a black box

framework stage. XTHREAD was developed thinking about this key objective, many

parts of it already reach a black box stage however there are many others that do

not. It was not our des ire to provide a closed packaged tool impossible to enhance

and difficult to use, on the contrary, we want the us ers to understand the architecture

of the tool and the metaphors living inside it. The programmer is able to modify

any part of the framework and to specify their own abstractions further enriching

the tool. It is our objective to provide a live framework with a toolkit that could be

further improved.

Sorne experiments were performed in order to graphically represent the Data Race

detection analysis results using the DOT tool. An inter-procedural representation of

each thread was drawn and the data races were highlighted as a red (definite) or green

118

8.2. Future Work

(potential) line binding the statements involved. However, the graphics were useful

only for small programs with very few method caIls, otherwise, the interpretation

of the DOT graphs were impossible. Other drawing tools should be analyzed and a

summary technique should be implemented where only small code portions should be

visible at the same time in order to reduce the graph complexity.

More complex Points-to analysis tools like PADDLE [Lho06, LH06] should be used

in order to analyze their impact in different concurrency analyses.

Data Race Detection Analysis

The Data Race Detection analysis implementation can be further improved from a

performance point of view. It will be an important performance improvement to en­

hance this implementation with an Escape analysis which will avoid analyzing state­

ments whose access variables are only relevant inside a method. Moreover, different

Points-to analysis implementations should be tested in order to analyze their impact

on different concurrency analyses.

May Happen in Parallel Analysis

MHP is an analysis that gathers information about which statements may happen

in parallei in a concurrent application. Precisely computing aIl pairs of statements

that may happen is undecidable, if we analyse aIl possible paths in aU threads, then

the problem is NP-Complete [Tay83]. In order to solve this problem, this implemen­

tation calculates a conservative approximation, and follows the basic ideas presented

in [NAC99]. There are other works which have taken Naumovich's approach and

further improve it like the optimizations presented in [LV04] and [Bar05]. The initial

examination of the problem suggests that implementing MHP in XThread would be

straightforward.

Abstractions

It does not matter if you use this framework in Java or export it to Smalltalk (which

will be great to see) Actors, self, .Net, any 00 language, the important are the

119

8.2. Future Work

abstractions, which can be right or wrong, it does not matter; the only thing that

really matters are the abstractions which live in the pure 00 paradigm and can be

applied to any implementation of them and be further improved.

120

Bibliography

[AFF06] Martin Abadi, Cormac Flanagan, and Stephen N. Freund. Types for safe

locking: Static race detection for java. ACM Trans. Program. Lang. Syst.,

28(2):207-255, 2006.

[Alm97] Paulo Sergio Almeida. Balloon types: Controlling sharing of state in data

types. In ECOOP, 1997.

[Bar05] Rajkishore Barik. Efficient computation of may-happen-in-parallel infor­

mation for concurrent java programs. In LCPC 2005: The 18th Inter­

national Workshop on Languages and Compilers for ParaUel Computing,

Hawthorne, New York, USA, 2005.

[BBG+60] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,

H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijn­

gaarden, and M. Woodger. Report on the algorithmic language algol 60.

Commun. ACM, 3(5):299-314, 1960.

[Bec02]

[BL02]

Beek. Test Driven Development: By Example. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2002.

M. Burrows and K. Leino. Finding stale-value errors in concurrent pro­

grams. Technical Report SRC-TN-2002-004, Compaq Systems Research

Center, May 2002.

121

Bibliography

[BLR02] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership

types for safe programming: preventing data races and deadlocks. In

OOPSLA '02: Proceedings of the 17th ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications, pages

211-230, New York, NY, USA, 2002. ACM Press.

[BNROl] John Boyland, James Noble, and William Retert. Capabilities for sharing:

[BR01]

A generalisation of uniqueness and read-only. In ECOOP '01: Proceedings

of the 15th European Conference on Object-Oriented Programming, pages

2-27, London, UK, 2001. Springer-Verlag.

Chandrasekhar Boyapati and Martin Rinard. A parameterized type sys­

tem for race-free java programs. In OOPSLA '01: Proceedings of the

16th ACM SIGPLAN conference on Object oriented programming, sys­

tems, languages, and applications, pages 56-69, New York, NY, USA,

2001. ACM Press.

[CBC93] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-sensitive

interprocedural computation of pointer-induced aliases and side effects. In

POPL '93: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 232-245, New York, NY,

USA, 1993. ACM Press.

[CD02] Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and

the disjointness of type and effect. In OOPSLA '02: Proceedings of the

17th ACM SIGPLAN conference on Object-oriented programming, sys­

tems, languages, and applications, pages 292-310, New York, NY, USA,

2002. ACM Press.

[CES71] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACM

Comput. Surv., 3(2):67-78, 1971.

122

Bibliography

[CK88]

[Cla01]

D. Callahan and K. Kennedy. Analysis of interprocedural side effects

in a parallel programming environment. In Proceedings of the lst Inter­

national Conference on Supercomputing, pages 138-171, New York, NY,

USA, 1988. Springer-Verlag New York, Inc.

David Clarke. Ownership and Containment. PhD thesis, School of Com­

puter Science and Engineering, University of New South Wales, Sydney,

Australia, 2001.

[CLL +02] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O'Callahan,

Vivek Sarkar, and Manu Sridharan. Efficient and precise datarace detec­

tion for multithreaded object-oriented programs. In PLDI '02: Proceed­

ings of the ACM SIGPLAN 2002 Conference on Programming language

design and implementation, pages 258-269, New York, NY, USA, 2002.

ACM Press.

[CNP01] David G. Clarke, James Noble, and John Pot ter. Simple ownership types

for object containment. In ECOOP '01: Proceedings of the 15th European

Conference on Object-Oriented Programming, pages 53-76, London, UK,

2001. Springer-Verlag.

[Cor84]

[CorOO]

[Cou86]

Inmos Corp. Occam Programming Manual. Prentice Hall Trade, 1984.

Standard Performance Evaluation Corporation. Specjbb2000 benchmark,

2000. http://www.spec.orgjjbb2000/.

Deborah S. Coutant. Retargetable high-level alias analysis. In POPL '86:

Proceedings of the 13th ACM SIGACT-SIGPLAN symposium on Princi­

ples of programming languages, pages 110-118, New York, NY, USA, 1986.

ACM Press.

[CPN98] David G. Clarke, John M. Potter, and James Noble. Ownership types

for flexible alias protection. In OOPSLA '98: Proceedings of the 13th

ACM SIGPLAN conference on Object-oriented programming, systems,

123

Bibliography

[CR82]

[DBZ]

[DC94]

languages, and applications, pages 48-64, New York, NY, USA, 1998.

ACM Press.

Anita L. Chow and Andres Rudmik. The design of a data fiow analyzer.

In SIGPLAN '82: Proceedings of the 1982 SIGPLAN symposium on Com­

piler construction, pages 106-113, New York, NY, USA, 1982. ACM Press.

Wolf Siberski Carola Lilienthal Daniel Megert Karl-Heinz Sylla

Dirk Bumer, Dirk Riehle and Heinz Zllighoven. Values in objects sys­

tems.

Matthew B. Dwyer and Lori A. Clarke. Data fiow analysis for verifying

properties of concurrent programs. In SIGSOFT '94: Proceedings of the

2nd ACM SIGSOFT symposium on Foundations of software engineering,

pages 62-75, New York, NY, USA, 1994. ACM Press.

[DDS98] G. Nelson D. Detlefs, K. R. M. Leino and J. Saxe. Extended static check­

ing. Technical Report TR SRC-159, Compaq Systems Research Center,

December 1998.

[Dij02] Edsger W. Dijkstra. Cooperating sequential processes. pages 65-138,

2002.

[DS91a] Anne Dinning and Edith Schonberg. Detecting access anomalies in pro­

grams with critical sections. In PADD '91: Proceedings of the 1991

ACM/ONR workshop on Parallel and distributed debugging, pages 85-96,

New York, NY, USA, 1991. ACM Press.

[DS91b] Evelyn Duesterwald and Mary Lou Soffa. Concurrency analysis in the

presence of procedures using a data-fiow framework. In TAV4: Proceedings

of the symposium on Testing, analysis, and verification, pages 36-48, New

York, NY, USA, 1991. ACM Press.

[EA03] Dawson Engler and Ken Ashcraft. Racerx: effective, static detection of

race conditions and deadlocks. In SOSP '03: Proceedings of the nineteenth

124

Bibliography

ACM symposium on Operating systems principles, pages 237-252, New

York, NY, USA, 2003. ACM Press.

[EGH94] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive

interprocedural points-to analysis in the presence of function pointers. In

PLDI '94: Proceedings of the ACM SIGPLAN 1994 conference on Pro­

gramming language design and implementation, pages 242-256, New York,

NY, USA, 1994. ACM Press.

[FA99a] Cormac Flanagan and Martin Abadi. Object types against races. In

CONCUR '99: Proceedings of the 10th International Conference on Con­

currency Theory, pages 288-303, London, UK, 1999. Springer-Verlag.

[FA99b] Cormac Flanagan and Martin Abadi. Types for safe locking. In ESOP '99:

[FFOO]

[FF01]

Proceedings of the 8th European Symposium on Programming Languages

and Systems, pages 91-108, London, UK, 1999. Springer-Verlag.

Cormac Flanagan and Stephen N. Freund. Type-based race detection for

java. In PLDI '00: Proceedings of the ACM SIGPLAN 2000 conference on

Programming language design and implementation, pages 219-232, New

York, NY, USA, 2000. ACM Press.

Cormac Flanagan and Stephen N. Freund. Detecting race conditions in

large programs. In PASTE '01: Proceedings of the 2001 ACM SIGPLAN­

SIGSOFT workshop on Program analysis for software tools and engineer­

ing, pages 90-96, New York, NY, USA, 2001. ACM Press.

[FF04] Cormac Flanagan and Stephen N. Freund. Type inference against races.

In In Static Analysis Symposium, pages 116-132, 2004.

[FJW97] K.Ottenstein Ferrante J and J. Warren. Compile-time analysis and opti­

mization of explicitly parallel programs. Parallel algorithms and applica­

tions, 1997.

125

Bibliography

[ForOO] Java Grande Forum. Java grande benchmark suite, 2000.

http:j jwww.epcc.ed.ac.uk/javagrandej.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program

dependence graph and its use in optimization. A CM Trans. Program.

Lang. Syst., 9(3):319-349, 1987.

[GHJ95] Erich Gamma, Richard Helm, and Ralph Johnson. Design Patterns. Ele­

ments of Reusable Object-Oriented Software. Addison-Wesley Professional

Computing Series. Addison-Wesley, 1995. GAM e 95:1 LEx.

[Han73] Per Brinch Hansen. Concurrent programming concepts. ACM Comput.

Surv., 5(4) :223-245, 1973.

[Han02a] Per Brinch Hansen. Rc 4000 software: multiprogramming system. pages

153-197, 2002.

[Han02b] Per Brinch Hansen. Shared classes. pages 265-271, 2002.

[HLW+92] John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, and Richard

HoIt. The geneva convention on the treatment of object aliasing. SIG­

PLAN OOPS Mess., 3(2):11-16, 1992.

[HM85] Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism

and concurrency. J. A CM, 32(1):137-161, 1985.

[Hoa71] C. A. R. Hoare. Towards a theory of parallel programming. pages 61-71,

1971.

[Hoa74] C. A. R. Hoare. Monitors: an operating system structuring concept.

Commun. A CM, 17(10):549-557, 1974.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. A CM,

21(8):666-677, 1978.

126

Bibliography

[Hog91] John Hogg. Islands: aliasing protection in object-oriented languages. In

OOPSLA '91: Conference proceedings on Object-oriented programming

systems, languages, and applications, pages 271-285, New York, NY, USA,

1991. ACM Press.

[JDCS01] A. Loginov J.-D. Choi and V. Sarkar. Static datarace analysis for mul­

tithreaded object-oriented programs. Research Report RC2246(W0108-

016), IBM - Research Division, August 2001.

[JF88] Ralph Johnson and Brian Foote. Designing reusable classes. In JOOP -

Journal of Object Oriented Programming, page 27, 19-21 June 1988.

[Kah74] G. Kahn. The semantics of a simple language for parallel programming.

Information Processing '74, pages 471-475, 1974.

[KMLS01] G. Nelson K. M. Leino and J. Saxe. Esc/java user's manual. Technical

Report 2000-002, Compaq Systems Research Center, October 2001.

[KT99] Gunter Kniesel and Dirk Theisen. Jac - java with transitive readonly

access control. In ECOOP'99: Intercontinental Workshop on Aliasing in

Object-Oriented Systems, Lisbon, Portugal, 1999.

[Kuh77] Kuhn. Second thoughts on paradigms. University of Chicago Press, 1977.

GAM e 95:1 1. Ex.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. Commun. A CM, 21(7):558-565, 1978.

[Lea99] Doug Lea. Concurrent Programming in Java. Addison-Wesley, 1999.

[Lee99] Jaejin Lee. Compilation techniques for explicitly parallel programs. PhD

thesis, University of Illinois at Unbana-Champaign, 1999.

127

Bibliography

[LH06]

[Lho02]

[Lho06]

[Li04]

[LR92]

[LV04]

[Mi196]

Ondfej Lhotak and Laurie Hendren. Context-sensitive points-to analysis:

is it worth it? In A. Mycroft and A. Zeller, edit ors , Compiler Construc­

tion, 15th International Conference, volume 3923 of LNCS, pages 47-64,

Vienna, March 2006. Springer.

Ondfej Lhotak Spark: A flexible points-to analysis framework for Java.

Master's thesis, McGill University, December 2002.

Ondfej Lhotak. Program Analysis using Binary Decision Diagrams. PhD

thesis, McGill University, January 2006.

Lin Li. A practical mhp information computation for concurrent Java

programs. Master's thesis, McGill University, August 2004.

William Landi and Barbara G. Ryder. A safe approximate algorithm for

interprocedural aliasing. In PLDI '92: Proceedings of the ACM SIGPLAN

1992 conference on Programming language design and implementation,

pages 235-248, New York, NY, USA, 1992. ACM Press.

Lin Li and Clark Verbrugge. A practical MHP information analysis for

concurrent Java programs. In Proceedings of the 17th International Work­

shop on Languages and Compilers for ParaUel Computing (L CPC '04),

number TBA in LNCS. Springer Verlag, September 2004.

Robin Milner. Ca1culi for interaction. Acta Informatica, 33(8):707-737,

1996.

[MPH99] P. Muller and A. Poetzsch-Heffter. Universes: A type system for con­

trolling representation exposure. In In A. Poetzsch-Heffter and J. Meyer,

editors,Programming Languages and Fundamentals of Programming, Fer­

nuniversitat Hagen, 1999.

[MR91] Stephen P. Masticola and Barbara G. Ryder. A model of ada programs for

static deadlock detection in polynomial times. In PAD D '91: Proceedings

128

Bibliography

[MR93]

[NA98]

of the 1991 ACM/ONR workshop on ParaUel and distributed debugging,

pages 97-107, New York, NY, USA, 1991. ACM Press.

Stephen P. Masticola and Barbara G. Ryder. Non-concurrency analysis.

In PPOPP '93: Proceedings of the fourlh ACM SIGPLAN symposium

on Principles and practice of paraUel programming, pages 129-138, New

York, NY, USA, 1993. ACM Press.

Gleb Naumovich and George S. Avrunin. A conservative data flow algo­

rit hm for detecting aIl pairs of statements that may happen in paraIlel.

In SIGSOFT '98/FSE-6: Proceedings of the 6th ACM SIGSOFT inter­

national symposium on Foundations of software engineering, pages 24-34,

New York, NY, USA, 1998. ACM Press.

[NAC98] G. Naumovich, G. Avrunin, and L. Clarke. An efficient algorithm for

computing MHP information for concurrent java programs. Technical

Report UM-CS-1998-044, , 1998.

[NAC99] Gleb Naumovich, George S. Avrunin, and Lori A. Clarke. An efficient

algorithm for computing mhp information for concurrent java programs.

In ESEC/FSE-7: Proceedings of the 7th European software engineering

conference held jointly with the 7th ACM SIGSOFT international sym­

posium on Foundations of software engineering, pages 338-354, London,

UK, 1999. Springer-Verlag.

[NM92] Robert H. B. Netzer and Barton P. Miller. What are race conditions?:

Sorne issues and formalizations. ACM Lett. Program. Lang. Syst., 1(1):74-

88, 1992.

[NVP98] James Noble, Jan Vitek, and John Potter. Flexible alias protection. In

ECCOP '98: Proceedings of the 12th European Conference on Object­

Oriented Programming, pages 158-185, London, UK, 1998. Springer­

Verlag.

129

Bibliography

[OC03]

[Pug84]

[RinOl]

[Sar97]

Robert O'Callahan and Jong-Deok Choi. Hybrid dynamic data race detec­

tion. In PPoPP '03: Proceedings of the ninth ACM SIGPLAN symposium

on Principles and practice of parallel programming, pages 167-178, New

York, NY, USA, 2003. ACM Press.

John R. Pugh. Actors: the stage is set. SIGPLAN Not., 19(3):61-65,

1984.

Martin C. Rinard. Analysis of multithreaded programs. In SAS '01:

Proceedings of the 8th International Symposium on Static Analysis, pages

1-19, London, UK, 2001. Springer-Verlag.

Vivek Sarkar. Analysis and optimization of explicitly parallel programs

using the parallel program graph representation. In Languages and Com­

pilers for Parallel Computing, pages 94-113, 1997.

[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and

Thomas Anderson. Eraser: a dynamic data race detector for multi­

threaded programs. In SOSP '97: Proceedings of the sixteenth ACM

symposium on Operating systems principles, pages 27-37, New York, NY,

USA, 1997. ACM Press.

[SE94] Amitabh Srivastava and Alan Eustace. Atom: a system for building cus­

tomized program analysis tools. In PLDI '94: Proceedings of the ACM

SIGPLAN 1994 conference on Programming language design and imple­

mentation, pages 196-205, New York, NY, USA, 1994. ACM Press.

[SHR+OO] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja VaUée­

Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. Practical vir­

tuaI method caU resolution for java. In OOPSLA '00: Proceedings of the

15th ACM SIGPLAN conference on Object-oriented programming, sys­

tems, languages, and applications, pages 264-280, New York, NY, USA,

2000. ACM Press.

130

Bibliography

[Spe]

[SS94]

[Ste93]

[Tay83]

Spec jvm98 benchmarks. http://www.spec.org/osg/jvm98j.

Vivek Sarkar and Barbara Simons. Parallel program graphs and their clas­

sification. In Proceedings of the 6th International Workshop on Languages

and Compilers for Parallel Computing, pages 633-655, London, UK, 1994.

Springer-Verlag.

N. Sterling. Warlock: A static data race analysis tool. In In Proceedings

of the 1993 USENIX Winter Technical Conference, pages 97-106, New

York, NY, USA, 1993. ACM Press.

R. N. Taylor. Complexity of analyzing the synchronization structure of

concurrent programs, 1983. Acta Informatica.

[vP04] Christoph von Praun. Detecting Synchronization Defects in Multi­

Threaded Oby'ect-Oriented Programs. PhD thesis, Swiss Federal Institute

of Technology Zurich (ETH ZURICH), 2004.

[vPG01] Christoph von Praun and Thomas R. Gross. Object race detection. In

OOPSLA '01: Proceedings of the 16th ACM SIGPLAN conference on

Oby'ect oriented programming, systems, languages, and applications, pages

70-82, New York, NY, USA, 2001. ACM Press.

[VROO]

[VRH]

[Wei80]

Raja Vallée-Rai. Soot: A Java bytecode optimization framework. Master's

thesis, McGill University, October 2000.

Raja Vallée-Rai and Laurie J. Hendren. Jimple: Simplifying Java bytecode

for analyses and transformations. In Sable reseach Group, page 15, July.

William E. Weihl. Interprocedural data flow analysis in the presence of

pointers, procedure variables, and label variables. In POPL '80: Pro­

ceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 83-94, New York, NY, USA, 1980. ACM

Press.

131

