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Observing that p is defined on this R1-basis, we extend 
1 p linearly to p 1 AS ---> R. Two obvious properties 

of pare 

(i) P(n) > 0, " in Us 
and (ii) p(aa) = p(a), a in AS' a = t x • 

x in S 

Conversely, if S is any finite set and p : AS ---> Rl 

is any R1-linear map such that p(l) = 1 and the condi

tions (i) and (ii) hold, then through the definition 

a process (X ) is defined with state-space S and the n 

associated R1-algebra generated by S is exactly AS. 

There is thus a one-to-one correspondence between (X ) n 

and the R1-linear map p : AS ---> RI, and accordingly 

we may at times refer ta the process as this R1-linear 

roap. 

Let now L be a real vector space and q a linear 

functional on L. Let e be an element of Land (T : 
x 

x in S) be a set of linear operators on L into L such 

that for aIl Xl' ... , x belonging to Sand n = 1, 2, 
n 

p(x1XZ ..• Xn) = q(T .T ... T e). Xl x 2 xn 



@". 
: ~ "<' 
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Let us nov identify T vith x, x that is, for k belonging 

to L vrite xk instead of T k. x This vay ve can view the 

states of the proces8 as 1inear operators on the vector 

space L. The a1gebra of operators generated by (Tx 
. 
~ 

x in S) ce.n nov be identified with AS and thus L can be 

viewed as a 1eft AS-module. The triple (L, q, e) is 

called a stochastic S-module (abbreviated 'sS-module') 

associated vith the process (X ). n 

If (L,q,e) is an sS-module associated with a pro-

cess (X ), then 
n 

(i) q(e) 

(ii) q(iïe ) 

and (iii) for a 

= q(1e) 

= phi) 

in AS' 

= p(l) = 1, 

> r.. 
iï in Us v, 

q(a(a-1)e) = p(a(o-l) 

= p(ao-a) 

= p(acr) - p(a) 

= p(a) - p(a) 

= o. 

Conversely, let L be a real vector space, q a 11-

near functional on Land e a vector. Let S be a finiie 

set of 1inear operators acting on L and assume that 

conditions (i), (ii) and (iii) hold. Then 



i. 

10:1.::.: Cy 

p(l) = q(le) = q(e} = l, 

p(ii') = q(ii'e) > 0, ii' in Us -
and for a in AS' p(ao) = q(aoe) 

= q(ae), by (iii) 

== p(a) , 

and hence, because of the one-ta-one correspondence 

mentioned earlier, there exists a process (Xn ) with 

st&te-space Sand (L,q,e) is an sS-module associated 

with it. 
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Let no'\\:' (L,q,e) and (L',q',e f
) be two sS-modules. 

Then a morphisru of (L,q,e), (L' ,q',e t ) is defined as a 

morphism 

t L --::;:. L' 

of mod.ules sueh that tee} = et, q'o t = q. That is, 

t : L ---~ L' is sueh that t(e) = e' and the diagram 

is commutative. The sS-modules (L,q,e), (L' ,q' ,e') 

are said te be homomorphie if there exists sueh a mor-

phism t. They i'Lre :-;aid to be isomerphie if t is an 

isomorphi sm. 'l'he fa 110 .. iag arf~ument c learly shows that 
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the existence of a morphism of sS-modu1es implies that 

the associated processes are the same 

Let p be the process associated with (L,q,e) and 

p' the process associated with (L',q',e'). Let t be a 

morphism of these two modules. Then for every a in AS' 

p' (a) = q' (te' ) 

= q' (at( e) ) 

= q' (t(ae» 

= (q'o t)(ae) 

= q(ae) 

= p(a) • 

So p and p' are the same. 

An sS-module (L,q,e) is said to be reduced if 

(i) L is cyc1ic with generator e, i.e., L = ASe, 

(ii) L has no non-zero submodules LI with q(LI) = 0, 

i.e., q(ASk) = 0 imp1ies k = 0 for all k in L. 

We now show that upto isomorphism there is one and 

on1y one reduced sS-modu1e associated with every process. 

Theorem 1. Any process (X ) with state-space S is asso
n 

ciated with a reduced sS-module; any two sueh modules 

are isomorphie. 
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Proof. Consider the diseription of the proeess as the 

Rl-linear map p : AS ---> al. Let N c: AS be defined by 

N = (a in AS : p(ASa) = 0). 

Then N is a subgroup of AS under addition and 

a in AS' ~ in N implies a~ in N. 

Also, 

a in N > p(ASa) = 0 

==i> p(l.a) = p(a) = 0, sinee 1 in AS 

> a in K(p). 

Thus N is a left ideal in the kernel of p. The follow-

ing argument shows that it is the large st ideal with 

this property. 

Suppose NI is an ideal eontained in K(p). Then, 

being an ideal, 

and consequently, 

ASNI c:: K(p). 

If now a is in NI, then a is in N sinee p(ASa) = 0, and 

so N' C. N. 

We now take for L the quotient module AS/N of AS 

by N (1 is then ~ 1eft AS-module) and let 



j:AS->L 

be the projection. Since p vanishes on N, there is a 

lmique Rl-linear map q : L ---> RI with P = q 0 j: 

Let nove = j{l) = 1 + N. If k is in L, then 

k = a + N for sorne a in AS 

= a{l + N) = ae which is in ASe. 
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Conversely, any element in ASe is of the form ae where 

a is in AS' and 

ae = a(l + N) = a + N which belongs to L. 

Thus L c: ASe and ASe ~ L. So L = ASe, showing that L 

is eyelie with generator e. 

Let LI ~ L be a submodule vith q(L') = O. Then 

j-l(L') is a left ideal of AS and sinee 

it is a left ideal in the kernel of p, so that j-l(L')C:N. 

But then LI = O. 

On the other hand aIl redueed 58-modules must arise 

in just this way, with a ----> ae playing the role of the 
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map j. This observation establishes the isomorphism of 

two reduced sS-modules. In view o~ this isomorphism, 

henceforth we can speak of'the' reduced sS-module of a 

stochastic process. 

Ve outline below a procedure for constructing the 

reduced sS-module of a stochasiiic process, given any 

sS-module. 

Let {L,q,e} be any sS-module. First replace L by 

the cyclic submodule ASe. Form the quotient module of 

this by i ts largest submodule N for which ASN C N and 

q{N} = O. e is replaced by its coset e + N and q now 

acts on the cosets. 

Lemme. 2.If (L,q,e) is a reduced 58-module, then (fe = e. 

Proof. Clearly, AS(a-l)e is 8. submoduie. Again, since 

q(a(a-l)e) = 0 for every a in AS' we have 

a{(f-I)e ~ K(q) for every cr tE AS' 

This implies that AS(a-l)e is contained in K(q). Thus 

AS(o-l)e is a submodule in the kernel of q. But since 

(L,q,e) is reduced, definition implies 

AS(a-l)e = 0 or a{a-I)e = 0 for every a E AS. 

Then a = l, oe = e. This completes the proof. 
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Since to every process there is associated essen-

tially one and only one reduced sS-module it follows 

that every property of the process is reflected by some 

corresponding property of its reduced sS-module. It is 

there:eore quite natural to try to characterize these 

probabilistic properties in terms of the corresponding 

algebraic properties of the reduced sS-module associa-

ted vith the process. In the next two sections we 

present a few of the results in this direction. For 

characterizations of properties such as ergodicity, 

stationarity, etc. the reader may consult the paper 

by Rolland /10/. 

4. INDEPENDENCE 

Consider the case when the reduced sS-module is 

one-dimensional, that is, when L i5 one-dimensional 

RI Th L RI . RI C L over • en = e S1nce e • 

Theorem 3. If (L,q,e) 15 the reduced sS-module of (X ), n 

then the process is a sequence of independent identi

cally distributed random variables iff L = RIe. 

Proof. Let (X ) be a sequence of independent identin 

cally distributed random variables. Then for aIl n, m 



••• , Xn= Xn ' Xn+l = Xn+l ' ••• , X - x ) n+m n+m 

Therefore for aIl "' "' in Us we have 

q{"'ïe'e) = ( ) ( q"e·q"'e), 

or equivalently, 
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where c = q{»'e). But then, through the linearity of q, 

this implies 

Using now the fact that L is reduced, we have 

i. e. , IY (-, c \ "'" 
.... " - 1" = o for a·ll 

In particular, for (X = 1 this gives 

l "'e = c.e which is in R e. 

Thus ASe <: RIe or L c: RIe. L being a real vector 

space, RIe <= L. Hence L = ale. 
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l Conversely, suppose L = R e. If now y is in S, then 

y is in AS and since L is a left AS-module, ye belongs to 

L RI Th f f . RI B = e. ere ore or some cy 1n ,ye = cye. ut 

then 

Arguing inductively, it is easy to see that for any xl' 

••• , xn in S, 

which shows that (Xn ) is a sequence of independent iden

tically distributed random variables. 

5. PROHIBITED AND RECURRENT SEQUENCES OF STATES 

A sequence of states xl' ... , X of a process is n 

prohibited if it is impossible for the process to ever 

consecutively occupy xl' .•• , 

(L,q,e) this means 

X • n Expressed in terms of 

Lemma 4. If (L,q,e) is the reduced sS-module of a pro

cess then the sequence of states xl' ••• , xn is prohi

bited iff xlo •. xnL = O. 
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Proof. Assume that xl ••• xnL = O. Then, sinee e is in L, 

Let n' = 

OS q(n xl···xnn'e) 

Now, for aIl n' n'in Us , 

t'hen 

S q(n x1",xn dke), on replacing eaeh xi by cr 

= q(n xl ••• xne), by repeated use of cr e = e 

= q(O), sinee x1 ••• xne = 0 

= O. 

Thus q(n xl."Xn n'e) = 0 for aIl "' n' in Us and hence 

xl' ••• , xn is a prohi bi ted sequence of ·states. 

Conversely, let xl' •.• , xn be a prohibited sequence 

of states. Sinee (L,q,e) is reduced, we have L = ASe. 

So any b in L is of the form b = a e for sorne a in AS' 

Sinee xl' ••• , xn is prohibited, 

Henee xl ••• xnb = xl ••• xna e is in K(q), or equivalently 

xl ••• xnL C:K(q). But sinee (L,q,e) is redueed, we have 

xl ••• xnL = O. This co~pletes the proof of the lemma. 

We say a sequence of states xl' ••• , xn is 

reeurrent if given that the proeess has Just exeeuted 
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the sequence xl' .•• , xn any other past information is 

irrelevant for the probability of an event occurring in 

the future. Formulated in terms of (L,q,e), this is 

equivalent to 

q(ii" x1· •• xn ii' e, 
q ( ii ' xl··· xn e ) 

= 
q(1t" xl ••• xn ii' e) 

q(ii'" xl···xne) 

for aIl ii, ii ' , ii" in Us for which q(ii' xl ••• xne) and 

q(ii" xl· •• xne) are positive. Letting r = xl ••• xn ' we 

May rewrite this as 

( l ) q ( " ' r ii e). q ( ii" r e) = q ( ii" r ii e). q ( ii ' r e), 

which is trivia1ly true also when either q(ii' r e) = 0 

or q(ii" r e) = O. Consequently we define r in Us to be 

a recurrent sequence if for aIl ii, ii', ii" in Us equa

tion (1) holds. Vacuous1y, the definition allows pro-

hibited sequences also to be recurrent. The following 

theorem characterizes a recurrent sequence in terms of 

the reduced sS-module. 

Theorem 5. Let (L,q,e) be the reduced sS-module associa

ted with a process (Xn ). A sequence r = xl ••• xn of 

states is a recurrent sequence iff r L 1 
= R r e. 
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Proof. Assume that r is a recurrent sequence. If r is 

a1so prohibited, then r L = ° = R1r e. So ve suppose 

that r is not prohibited. But then fo~ some Tto in US' 

q(nor e} > 0, and since r is recurrent, for Tt, Tt' in US, 

or, 

1ince L is reduced ~his gives 

that is, r" e = cre, c = q{Ttor Tt e)/q(Tt r e), 

so that 

r Tt e is in R1r e for aIl Tt in US' 

and hence 

1 rLC.Rre. 

Hence r L 

Converse1y, let r L = 

1 = R r e. 

If q(Tt'r e} = 0, 

then equation (1) holds trivially for aIl Tt, "" in Us 

and hence r is a recurrent sequence. Consider the case 

when q(ÏI'r e) > O. Now, for any Tt in US' 

"'r" e = c.Tt'r e, 

where c = q(Tt'r Tt e)!q(ü'r e} for aIl Tt' in US. 



Rence for any"" in US' 

w"r W e = (q{W'r W e)/q{w'r el) w"r e, 

or 

q{w'r e) w"r W e = q{w'r W e) "tir e, 

and ûü applying q to both sides 

q ( Tt' 'r e). q (w" r W e) = q (", 'r W e). q hi" r e), 

showing that r is recurrent. This completes the 

proof. 

6. INDUCED PROCESSES 

If F : A ---> B is a ring homomorphism and L 

a left B-module, then we denote by L/F/ the left 

A-module having the sarne underlying abelian group as 

that of L, the operation scalar multiplication being 

given by 

n.k = F(n).k, n in A. 
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Let now (X ) be a process with state-space Sand 
n 

let f : S ---~ T ( T finite). Then a new process 

(Yn = f(Xn » is defined by the formula 

(2) 
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for aIl YI' ••• , Yn in T. We calI (Yn ) the process 

induced from (Xn ) by f. The (Yn)-process can be chara-

cterized in terms of stochastic modules as follows: 

Let (L,q,e) be the reduced sS-module associated 

with the process (Xn ). Define 

to be the ring homomorphism given on the generators 

y in T of AT by 

f(y) = 1: x 
f(x)=y 

Then, according to the notation introduced above, L/f/ 

is a left AT-module having the same underlying abelian 

group as that of L, scalar multiplication being given by 

a'. k = f (a 1 ) • k, a' in AT. 

q L/f/ ---~ RI is again linear. So (L/f/,q,e) 

is an sT-module and p' AT ---~ RI defined by the 

formula 

p'Ca') = q(a'.e), a' in AT 

is the associated stochastic process. 

Theorem 6. The process p' associated with (L/11,q,e) is 

induced by f from that associated with (L,q,e). 
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Proof. Let p be the process associated with (L,q,e). 

Considering the generators y in T of ~, we have 

= p(f(YI) ••• l(yn », by definition of f 

= p( ( l xl ) ••• ( l xn ) ) 
f(xI)=Yl f(xn)=Yn 

= l ... l p(xl ••• x ) 
f(xI)=YI f(xn)=Yn n 

and this being just condition (2), the theorem is proved. 

7. MARKOV CRAINS 

We confine our attention to processes vith statio-

n~ry transition probabilities only. 

A process (X ) is a first order Markov chain if n 

there is a map 

t . . S x S ---~ 

the transition matrix, su ch that for any sequence 

Xl' ••• , xn in S ( S is the state-space of the process ) 

= t(x l'x ).p(xl···x 1) n- n n-
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which, on iteration becomes 

An equivalent version of this is 

(3) q(a{xy - t{x,y)x)e) = 0 for a in AS' x, y in S. 

The transition matrix is always taken non-negative and 

stochastic, i.e., t{x,y) ~ 0 and E t(x,y) = 1. 
Y 

Theorem 70 If EL,q,e} is a reduced sS-module then the 

associated stochastic process is a l-st arder Markov 

chain iff for each x in S, 

x L = 

i.e., the image of L under each operator x in S i5 at 

MOst one-dirnensional. 

Proof. Let p l : AS ---~ R be the process associated 

with (L,q,e). If p is a Markov chain then (3) irnplies 

that q vanishes on the subrnodule 

Thus AS(xy - t{x,y)x)e is a subrnodule in the kernel 

of q. Since L is reduced this rneans 
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AS(xy - t(x,y)x)e = 0 

or a(xy - t(x,y)x)e = 0 for aIl a in AS. 

Setting a = 1, we get 

xye = t(x,y)xe. 

Using now the fact that L = ASe, we see that 

xL -- RIxe f Il . S .....- or a x l.n • 
l 

Obviously, xL ~ R-xe. Henee xL 1 
= R xe. 

Conversely, assume that for each x in S, xL 

Then, for x, y in S, we may write 

1 = R xe. 

xye = t(x,y)xe, for sorne t(x,y) in RI. 

So we have for a in AS' 

q(a{xy - t(x,y)x)e) = 0, 

which is condition (3). This completes the p~oof. 

It should be noted that if x is a prohibited state, 

then 

xL = 0 = RIxe. (Lemma 4) 

This is the case when xL is of dimension zero. For 

every non-prohibited x, xL is in fact one-dimensional. 

Corollary 1. If (L,q,e) is any sS-moduleand for each 

x in S, dim xL 'S l, thenthe associated stochastic 

process is al-st order Markov chain. 

For, the reduced module will obviously share this 

property. We call such modules Markovian. 
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Corollary 2. A process induced from al-st order Markov 

chain has its reduced module finite dimensional (over RI). 

A stronger version of Corollary 2 can be obtained 

as follows: 

Suppose f: S --> T and denote by Ny ' for y in T, 

the number of x such that f(x) = y. 

Theorem 8. If (L',q',e') is the reduced sT-module of a 

stochastic process induced by f from al-st order Markov 

chain on S, then for each y in T, 

dim yL' < N • - y 
This is essentially Gilbert's /8/ necessary condition. 

(See Lemma l of Chapter II.) 

In a straight forward manner we can generalize 

these concepts to k-th order Markov chains. Details of 

this generalization as weIl as some further interesting 

results may be found in /10/. 

8. PROCESSES INDUCED FROM MARKOV CRAINS 

This section contains the main theorem of this 

chapter (Theorem 15). Except for sorne minor details 

our proof closely resembles the proof given by HelIer 

(/9/, Theorem 5.1). However, a few more results are 

needed before we can actually prove the theorem. 



Ve define the regular module of a Markov chain 

with transition matrix t as follows: 
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Let L be a real vector space with a basis whica is 

in one-to-one correspondence with the elements of S. 

If we denote by i the basis vector which corresponds 

to x in S in this bijection, then the basis of L is 

( i : x in S). L is necessarily finite dimensional. 

Define an operation of AS on L by 

x(y) = t(x,y) i, for x, y in S. 

This way L may be regarded as a left AS-module. Let 

e = E i and define the linear functional q : L ---> RI 
x 

by 

q(i) = p(x}. 

The triple (L,q,e) now satisfies aIl the requirements 

of an sS-module and is called the regular module of the 

Markov chain. 

Theorem 9. The process associated with (L,q,e) is p. 

Proof. If x is in S, then 

xe = E t(x,y) i 
y 

= X, since E t(x,y) = 1. 
Y 

If xl' ••• , xn is a sequence in S, then 



A.;:; 
\{'~~~J) 

-xl···xne = xl··,xn_lxn ' since x e 
n 

= xl···x 2t (x l'x) n- n- n 

-= x n 

= o ••••••••••••••••••••••• 

= t(x l'x) t(x 2'x 1) ••• t(xl ,x2 ) il' n- n n- n-

Applying q to both sides, we get 

= p(x,x
2 

••• x __ ), 
.1. 11 

and this completes the proof. 

Let V be a real vector space. By a convex cone 

in V we mean a subset C of V such that 

x, y in C, 0:, .. f3 ~ 0 -=> 0: X + f3 y in C. 

A convex cone C is strongly convex if 

x, -x in C .> x = o. 
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A convex cone C is polyhedral if it is the intersection 

of finitely many half-spaces. A subspace WC: V inter-

sects a convex COlle CCV extremally if 

x, y in C, x + y in W ;> x, y in W. 
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Lemma 10. If V c: V is a subspace and 0 ~V a strong

ly convex cone then W (\ 0 is a strongly convex cone. 

Proof. Obviously W() 0 is a convex cone. Also, 

x, -x in W "0 =-=> x, -x in 0 

=-=> x = 0, since 0 is strongly 

conveXe 

So w n 0 is strongly conveXe 

Lemma Il. If W <: V is a subspace and 0 c: V a poly

hedral cone, then so is W () O. 

Proof. 0 is polyhedral. So it is the intersection of 

finitely many half-spaces, each of which when inter-

sected with W is a half-space. Let 

o = 01 n ... nOn' where the Ci' sare half-spaces. 

Then 

,{ Oc = 

which is again the intersection of finitely many half

spaces and hence is polyhedral. 

Lemma 12. If W, V' ~ V are subspaces and W' intersects 

the cone CCV extremally then also W n W' intersects 

W (\ 0 extremally. 



Proof. Note that V n VI is a subspace. We have to 

show that 
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x, y in W n c, x + y in W f\ w 1 _-::;> x, Y in W (l w' • 

Let x, y in W n C wi th x + y in W n W'. Then 

x + y in Y' and x, y in C. 

But V' intersects C extremally. So x, y in Y'. Also 

x, y in W. Hence x, y in W(\W'. 

Lemma 13. If W (: V is a subspace, j : V ---> V/V the 

projection and C c: V is a polyhedral cone th en so is 

j ( C) c::. V/V. 

Proof. Let C = Cln ••• n C , where the C.' sare half-n ~ 

spaces. \le have 

j(C) = C + W 

= Cl (\ ••• (1 Cn + V 

= (Cl + W)(\ ••• (\(Cn + W) 

= j(Cl ) n ... "j(Cn ) 

where each j(C.} is a half-space. Being the inter-
1. 

section of finitely many half-spaces, it follows that 

the cone j(C) is polyhedral. 

Lemma 14. If W c: V is a subspace, j : V ---> V/V the 

projection, C ~ V a strongly convex cone and W inter

sects C extremally, then j(C) is strongly convexe 
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Proof. Let x, -x in j(cl = c + W = (c + W c in C). 

Then 

x = c + W, -x = c' + W, c, c'in C. 

Nov, 

o = x + (-x) = (c + c') + W ~ c + c' = 0 

or c' = -c. Thus c, -c belong to C which is strongly 

convex, and so c = O. But then x = -x = W, the zero 

element of V/W. Hence j(C) is strongly convexe 

Theorem 15. Let (L,q,e) be a reduced sS-module. The 

associated stochastic process is induced from al-st 

order Markov chain iff there is a convex cone C c: L 

such that 

(i) e belongs to C, 

(ii) q(H) ~ 0," in C, 

(iii) C is invariant under PS ' i.e., PSC ~ C, where 

Ps is the coordinate cone of AS' consisting of 

polynomials with non-negative coefficients, 

and 

(iv) C is strongly convex and polyhedral. 

Proof. Suppose our process is induced by a map 

f : T -::;> S 

from al-st order Markov chain with regular sT-module 

(L',q',e ' ). 



84 

This means the following: 

The real vector space L' has basis ( a : a in T ), 

e' = t œ and the operation of AT on L' is defined 
a; in T 

by 

f3(a) = t' (~,a)~, 13, a in T, 

where t' : T x T ~ RI is the transition probability 

function; q' : L' ---> RI is defined by q'(a) = p'(a) 

and if p is the process associated vith (L,q,e)', then 

L 
f(al)=xl 

al' ••• , an belong to T. 

where 

We must produce a convex cone C ~ L having pro

perties (i) - (iv) vith respect to S. 

Consider the convex cone C' c: L' defined by 

C' = (k ' in L' : q' (k') ~ 0 ). 

It is easy to see that CI has, vith respect to T, the 

properties (i) - (iv). Consider now 

the i~ing homomorphism given on the generators x in S 

of AS by 

l'(x} = t a 
f(a)=x 



Then L'/?/ represents the left AS-module having the 

same underlying abelian group as that of L', scalar 

mul tiplic8,tion being given by 

ex.k' = f(ex) .k' , ex in A' S , k' in L' • 

q' • L'/1/ -> RI is again linear and e' belongs • 

to L'/1/. So (L' /1/ ,q , ,e' ) is an sS-module and the 

associated stochastic process is induced by f from 

that associated with (L',q',e'). (See Section 6.) 

Now let LI = AS.e' = (ex.e'= 1(ex}.e' : ex in AS). 

Then LI is a submodule of L'/1/. Also C' is strongly 

convex and polyhedral in L'. Therefore by lemmas 10 

and Il, the cone Llf} C' is strongly convex and poly

hedral. Obviously, 

Also, 

C LI n CI. 
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Thus Ll (1 C' has properties (i) - (iv) with respect to S. 
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Now, let Nl (: LI be the largest submodule on which 

q' vanishes. The quotient module LI/NI May be identi

fied with L, with q', e' going into q, e respectively. 

(Observe that two reduced sS-modules are isomorphically 

unique.) 

Now, NI intersects Ll (\ C' extremally. For, 

suppose u, v be in Ll (\ C' with u + v in NI. Then for 

any a belonging to PS ' we have that 

a.u belongs to LIC) C' and a.(u + v) belongs 

to NI' so that 

o <q'(a.u) ~ qr(a.u + a.v} = q'(a.(u + v» = o. 

Therefore, 

qr(a.u) = 0 for anya belonging to PS• 

In particular, for a = l, we have qr(u} = 0 and conse-

quently, u is in NI" Similarly v also is in NI. 

Now Llf) cr is a strongly convex and polyhedral 

cone in LI' and NI <: LI intersects LI ft cr extremally. 

Therefore, if we take C as the image of Ll (\ C'in 

L = LI/NI under the projection 
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then by lemmas 13 and 14, C is a strongly convex poly

hedral cone in L. Obviously C also satisfies condi

tions (i) - (iii). Thus C satisfies aIl the require-

ments. 

Conversely, let C ~ L be a convex cone satisfying 

conditions (i) - (iv). Our task is to exhibit al-st 

order Markov chain such that the process associated 

vith (L,q,e) is induced from this Markov chain. 

C being polyhedral, there exists a finite subset 

U of C such that C is the convex hull of the rays 

through the elements of U. Then, since e is in C, we 

can write 

e = 1: au, 
. U u U l.n 

a > o. u-

Also since Ps.C ~ C, we have for any x belonging to S 

and u belonging to U, 

X.U = v a > O. xuv -

Let T = S x U = ( (x,u) : x in S, u in U ) and let L' 

be the (real) vector space vith basis ( < x,u > ) in 

bijective correspondence vith T. Ve make LI into a 

left AT-module by setting 

(4) (x,u).< y,v > = a < x,u >, x, y in S, u, v in U. xvu 



EV':; ~",,~,,~ 
.... 

If n is the number of elements in S, we define 

e' = n- l L L a < x,u > , 
x in S,u in U u 

1 and determine q' : L' ---> R by q' < x,u > = q(u). 

Now, (4) sho~s that dim (x,u) L' < 1 for each 

(x,u) in T, and 50, by Corollary 1 to Theorem 7, 

(L',q',e') is an sT-module whose associated process 

is al-st order Markov chain. 

Let f : T ---> S be the projection. We claim 
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that the process induced by f from the one just defined 

is associateà with (L,q,e). To see this define 

g : L' -> L 

as the linear extension of g < x,u > = u. Then 

g(e') -1 L- E = n a u 
in S,u in U u x 

-1 L e = n 
x in S 

-1 = n . n e = e . 
Also, 

q 0 g < x,u > = q(g < x,u » 

= q(u) 

= q' < x,u > . 

Therefore q 0 g = q'. 
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Further, g : L'/?/ ---> L is a morphism of the AS~ modu

les L'/?/ and L. For, if x is in S, then 

g(x. < y,v » = g(?(x) < y,v » 

= g( t (x,u) < y,v » 
ueU 

= g ( E a <x, u » 
u€U xvu 

= t a g < x,u > 
uE.U xvu 

.. 
= t a ."u. 

uEU xvu 

. .. " 

x.v x.g < y,v >. 

Thus g is a morphism of sS-modules and so the associated 

processes are the same. This completes the proof of the 

theorem. 

9. AN EXAMPLE 

Applying the criterion of Theorem 15 HelIer /9/ has 

constructed a process which is not induced from a Markov 

chain. The details of this construction May be found in 

his paper(/9/, Section 6). We give below the construct-

ion of a process which is induced from a Markov chain. 

(We follow the notations of Theorem 15). 

Let L be the Eu61idean plane vith basis ( (1,0), 

(0,1». Let e = (1,0) and let q be the inner product 

with e 50 that q(e) = 1. For S we tak9 the set of two 

elements x , y and make L into an AS-module as follows: 
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x acts on L as a.rl where rI is the orthogonal proje

ction on the line LI through the origin wi th slope tan~, ;~:",:. 

and y acts on L as a.r2 where r 2 is the orthogonal proje

ction on the line L2 through the origin with slope - tan~, 

whe're ~ is some positive angle less than 45 0 and œ E RI is 
. 

chosen so that a e , (x + y) e = e. Simple calculations 

give a = 1/{2cos2~). As can be easily seen, (L,q,e) is 

then an irreducible sS-module. 

Consider the convex cone C CL formed by the two lines 

LI and L2 restricted to the l-st and 3-rd quadrants respe

ctively. Then C satisfies conditions (i) - (iv) of Theo-

rem 15. Therefore there exists al-st order Markov chain 

such that the process associated with (L,q,e) is induced 

from this Markov chain. Straight forward calculations 

show that the process p associated with (L,q,e) has ini

tial distribution (1/2, 1/2) and transition matrix 

1 - a) 
a • 

For U let us take the set consisting of the two 'V"ect

ors u = (cos2~ , cos~.sin~) = (1/(2a) , 1/(2a) - 1/2) 

and v = (cos2~ , - cos~.sin~) = (1/(2a) , 1/2 - 1/(2œ»0 

Then au = a = a, and a = a, = ex, axvu = ayuv = 1 - 0:, 
V xuu yvy 

and a xuv = s'xvv = a yvu = ayuu = o. 
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Now, T = ( (x,u), (x,v), (y,u), (y,v) ). Let L' be 

the real vector space with basis « s,t > ) in bijective 

correspondence with T. We make L' into a left ~-module 

by setting 

(s,t) < s',t'> = ast,t < s,t > , s, s'E S, t, t'€ U. 

Define 

e' = ~ (<x,u> + <X,v> + <y,U> + <y,v> ) 

and determine 

q' : L' --:> RI by q'-< s,t > = q(t). 

Then (L',q',e') is an sT-module whose associated process 

p' is al-st order Markov chain with state-space T and 

the process p is induced from p' by the projection 

f : T ---:> S. The initial probability distribution of 

this Harkov chain is (1/2 , 0, 0, 1/2). So the probable 

starting states are only (x,u) and (y,v), and the corres-

ponding transition probabilities are 

p( (x,u)/{x,u) ) = p( (y,v)/(y,v) ) = a 

and p( (y,v)/(x,u) ) = p( (x,u)/(y,v) ) = 1 - a. 
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