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Let us now identify Tx wvith x, that is, for k belonging
to L write xk instedd of Txk. This way we can view the
states of the process as linear operators on the vector
space L. The algebra of operators generated by (Tx s
X in S) cen now be identified with Ag and thus L can be
vieved as a left Ag-module. The triple (L, q, e) is

called a stochastic S-module (abbreviated 'sS-module!')

associated with the process (Xn).

If (L,q,¢) is an sS-module associated with a pro-

cess (Xn), then

(i) q(e) = gq(1le) = p(1) =1,
(ii) glwe) = p(s) =20, win U
and (iii) for a in Ags q(a(c-1)e) plafo-1))

p(ac-a)

I

p(ac) - p(a)

p(a) - pla)

= 0.

Conversely, let L be a real vector space, q a li-
neayr functional on L and e a vector. Let S be a finite
set of linear operators acting on L and assume that

conditions (i), (ii) and {4ii) hold. Then
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p(l) a(le) = q(e) =1,

p(%) = qlze) = 0, ¥ in Ug

and for « in Ag, p(ac) = q(ace)

= q(ae), by (iii)

= p(a),
and hence, because of the one-to-one correspondence
mentioned earlier, there exists a process (Xh) with

state-space S and (L,q,e) is an sS-module associated

with it.

Let now (L,q,e) and (L',q',e') be two sS-modules.
‘ Then a morphism of (L,q,e), (L',qa’,e') is defined as a

morphism

t ¢+ L —=> L1

of modules such that t(e) = e', q'o t = q. That is,
t : L —> L' is such that t(e) = e' and the diagram

b
L —=——— L!

‘NRr/l'

ARG AT WAt e o

&

is commutative. The sS-modules (L,q,e), (L',q',e')

are said 1o be homomorphic if there exists such a mor-

phism t. Theyv are said to be isomorphic if t is an

isomorphism,6 The following argument clearly shows that
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the existence of a morphism of sS-modules implies that

the associated processes are the same

Let p be the process associated with (L,q,e) and
p' the process associated with (L',q',e'). Let t be a

morphism of these two modules. Then for every o in AS’

p'(a)

q'lae')

= q'(at(e))
= q'(t(ae))
= (q'o t)(ae)

q(ae)

pla).
So p and p' are the same,
An sS-module (L,q,e) is said to be reduced if

(1) L is cyclic with generator e, i.e., L = Age,
(ii) L has no non-zero submodules L' with q(L') = 0,

i.e., q(ASk) = 0 implies k = O for all k in L.

h We now show that upto isomorphism there is one and

only one reduced sS-module associated with every process.

Theorem l. Any process (Xn) with state~space S is asso-
ciated with a reduced sS-module; any two such modules

are isomorphic.
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Proof. Consider the discription of the process as the

R -linear mep P : Ag —> R'. Let N C Ag be defined by

N = (¢ in Ag 3 p(Asa) = 0).
Then N is a subgroup of AS under addition and

o in AS’ 8 in N implies af in N,
Also,
o in N => pIASa) =0
==> p(l.a) = p(a) = 0, since 1 in Ag
==> a in K(p).

Thus N is a left ideal in the kernel of p. The follow=-
ing argument shows that it is the largest ideal with

this property.

Suppose N' is an ideal contained in K(p). Then,
being an ideal,
AN'C N,
and consequently,
AN' & K(p).
If now « is in N', then a is in N since p(ASa) = 0, and

so N'  N.

wWe now take for L the quotient module AS/N of AS

by N (L is then & left As—module) and let
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j:Ag—>L
be the prejection. Since p vanishes on N, there is a
unique Rl-linear map q ¢ L —> R1 with p =q o j:
J
Ag —>

l +N. If k is in L, then

Let now e = j(1)

k=a + N for some & in AS

(1 + N) = ae which is in Age.

Conversely, any element in Age is of the form ae where
a is in AS’ and

ae = a{l + N) = a + N vhich belongs to L.
Thus L € Age and Age & L. So L = Age, showing that L

is cyclic with generator e.

Let L' & L be a submodule with q(L') = O. Then

i7H(LY) is a left ideal of Ag and since
-1 P '
p(j 7 (L')) = (qg o j)(37 (L)) = q(L') =0,

it is a left ideal in the kernel of p, so that j_l(L')CZN.
But then L' = 0.

On the other hand all reduced sS-modules must arise

in just this way, with « > ae playing the role of the



map j. This observation establishes ‘the isomorphism of
two reduced sS-modules. In view of this isomorphism,
henceforth we can speak of'the' reduced sS-module of a

stochastic process.

We outline below a procedure for constructing the
reduced sS-module of a stochasiic process, given any

sS-module.

Let (L,q,e) be any sS-module. First replace L by
the cyclic submodule Age. Form the quotient module of
this by its largest submodule N for which ASNC N and
q(N) = 0. e is replaced by its coset e + N and q now

acts on the cosets.

Lemma 2.If (L,q,e) is a reduced sS—module, then ge = e.
Proof. Clearly, Ag(o-l)e is a submodule. Again, since
q{a(o-1)ej = O for every a in Ag, we have

a({oc-1)e €K(q) for every a & Ag.
This implies that As(d-l)e is contained in K(q). Thus
Ag(o-1)e is a submodule in the kernel of gq. But since

(L,q,e) is reduced, definition implies
AS(G—l)e = 0 or a{o-l)e = O for every a € Age

When a = 1, ce = e. This completes the proof.
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Since to every process there is associated essen-
tially one and only one reduced sS-module it follows
that every property of the process is reflected by some
corresponding property of its reduced sS-module. It is
therefore quite natural to try to characterize these
probabilistic properties in terms of the corresponding
algebraic properties of the reduced sS-module associa-
ted with the process. In the next two sections ve
present a few of the results in this direction. For
characterizations of properties such as ergodicity,
stationarity, etc. the reader may consult the paper

by Holland /10/.

INDEPENDENCE

Consider the case when the reduced sS-module is
one-dimensional, that is, when L is one-dimensional

1

over Rl. Then L = R7e since Rle (::I“

Theorem 3. If (L,q,e) is the reduced sS-module of (Xn),
then the process is a sequence of independent identi-

cally distributed random variables iff L = Rle.

Proof. Let (Xn) be a sequence of independent identi-

cally distributed random variables. Then for all n, m
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)

P(XgeeeX X g.0.X

n n+ n+m

= P(Xy= %3, .00y X = Xy X0e1= Fng1r oo Fon® *num

.o.,X=x ")

P(X1= X cevy Xn= xn).P(X1= X

1’ n+l’

n+l"‘xn+m)‘

p(xl...xn).p(x
Therefore for all 3, 7' in US we have

alw w'e) = q(x e).q(w'e),

or equivalently,

q(w(7'=c)e) = 0 for all 7 in Ug»

where ¢ = q(7'e). But then, through the linearity of q,
this implies

Q(AS(F'_c)e) = 0.
Using now the fact that L is reduced, we have
AS(W'—c)e =0, i.e., a(s'=c)e = O for 211 o in Ag-
In particular, for o =1 this gives
7'e = c.e which is in Rle.

Thus Age Rle or L C rle. L being a real vector

space, Rle C L. Hence L = Rle.
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Conversely, suppose L = Rle. If now y is in S, then
y is in AS and since L is a left As-module, ye belongs to

L = Rle. Therefore for some cy in RI, ye = ¢c_e. But

then

q(ye) = cyq(e) =c_ =ply) = P(Xl= y).

y

Arguing inductively, it is easy to see that for any Xq9

ceey X in S,
q(xl...xne) = p(xl...xn) = P(X1= xl)...P(X1= xn),

which shows that (Xn) is a sequence of independent iden-

tically distributed random variables.

PROHIBITED AND RECURRENT SEQUENCES OF STATES

A sequence of states Xpy ey X of a process is

prohibited if it is impossible for the process to ever

consecutively occupy Xys coey X Expressed in terms of

(Lyqg,e) this means
Q(le...xnw'e) =0 for all 7 , %' in US'

Lemma 4. If (L,q,e) is the reduced sS-module of a pro-
cess then the sequence of states Xyy eeey Xy is prohi-
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Proof. Assume that xl...an = 0. Then, since e is in L,

we have XyeooX € = 0. Now, for all 5, %' in US,

Q(F xp...x, w'e) = 0.

Let 7' = x{...x} Then

kc

o
IA

a(sw xl...xdw'e)

IA

q(w XyoooX, cke), on replacing each x{ by o

q(w xl...xne), by repeated use of 0 e = e

i

= Oo
Thus q(5 XyeoeX) w'e) = 0 for all 5, %' in Uy and hence

Xys eeey X is a prohibited sequence of states.

Conversely, let X19 eeey X be a prohibited sequence
of states. Since (L,q,e) is reduced, we have L = Ase.
So any b in L is of the form b = a e for some o in Ag-

Since Xyy eeey X is prohibited,
qx;...x a e) = O for any a in Ag-

Hence xl...xnb = XjeesX O € is in K(q), or equivalently
Xqesox L C XK(q). But since (L,q,e) is reduced, we have

xl...an = O. This completes the proof of the lemma.

We say a sequence of states Xys eees X is

recurrent if given that the process has just executed
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the sequence Xys +eey X, any other past information is
irrelevant for the probability of an event occurring in
the future. Formulated in terms of (L,q,e), this is

equivalent to

q(7' Xyeeox W e) a(F" xy..ex 7 e)
q(s" xl...xne) q (" xl...xne)
for all %, w', w" in U, for which q(%' x,...x_e) and
S 1 n

q(w" xl...xne) are positive., Letting r = XpeeeX 5 We

may rewrite this as
(1) a(F' rwe)a(F" re) =q(F" rve)alz' re),

which is trivially true also when either q(5' r e) = 0O
or q{7" r e) = 0. Consequently we define r in Ug to be

a recurrent sequence if for all 5, 7', %" in US equa-

tion (1) holds. Vacuously, the definition allows pro-
hibited sequences also to be recurrent. The following
theorem characterizes & recurrent sequence in terms of

the reduced sS-module.

Theorem 5. Let (L,q,e) be the reduced sS-module associa-

ted with a process (Xn)e A seguence r = XjeooX of

n
. . 1
states is a recurrent sequence iff r L = R'r e.
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Proof. Assume that r is a recurrent sequence. If r is
also prohibited, then r L = 0 = er e. So we suppose
that r is not prohibited. But then for some T in US,

q(wor e) > 0, and since r is recurrent, for 3, %' in US,

a(w'r & e).q(wor e) = q(wor w e).q(s'r e),

or,

alw' (a(7,r e)r 7 - alw,r = g)rle) = O.
3ince L is reduced ghis gives
alworelrwe = alfr welre,

thet is, ry7ye=cre, ¢ = q(wor we)/qls r e),
so that
r 7w e is in er e for all i in US’
and hence
r L (:,er e.
1

Obvisusly r L D RLr e. Hence r L = R'r e.

Conversely, let r L = er e. If q(s'r e) = O,

then equation (1) holds trivially for all %, 7" in Ug

and hence r is a recurrent sequence. Consider the case

when q(5'r e) > 0. Now, for any 7 in Uy
7'ry e = c.y'T e,

where ¢ = q(7'r 7 e)/q(w'r e) for all 7' in Ug.



Hence for any " in Ug)s

7'rwe = (q(5'r 7w e)/a(F'r e)) 7'r e,
or
g(z'r e) w'rve = qls'r 7e) 7"r e,

and on applying q to both sides
q(w'r e).q(7"r 7 e) = q(F'r 7 e).aly"r e),

showing that r is recurrent. This completes the

proof.

INDUCED PROCESSES

I£f F : A—=> B is a ring homomorphism and L
a left B-module, then we denote by L/F/ the left
A-module having the same underlying abelian group as
that of L, the operation scalar multiplication being
given by

ok = F(a).k, a in A.

Let now (Xn) be a process with state-space S and
let £ : S—=T ( T finite ). Then a new process

(Yn = f(Xn)) is defined by the formuia

(2) p'(yl...yn) - z p(xl...xn)

= z .
f(xl)=y1 f(xn)=yn

73



74

for all y), «.., y in T. Ve call (Yn) the process
induced from (Xn) by £. The (Yn)—process can be chara-

cterized in terms of stochastic modules as follows:

Let (L,q,e) be the reduced sS-module associated
with the process (Xn). Define

f AT —_— AS

to be the ring homomorphism given on the generators

y in T of AT by

Then, according to the notation introduced above, L/?/
is a left AT—module having the same underlying abelian

group as that of L, scalar multiplication being given by

a'.k = f(a').k, a' in Ap-

q : L/F/ —> Rl s again linear. So (L/%/,q,e)

is an sT-module and p' : Ap —> R! defined by the

formula

p'(a') = gq(a'.e), a' in Aqg
is the associated stochastic process.

Theorem 6. The process p' associated with (L/%/,q,e) is

induced by f from that associated with (L,q,e).
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Proof. Let p be the process associated with (L,q,e).

Considering the generators y in T of AT’ we have

P'(yl-..yn) = q(yl...yn.e)

a(F(yy...5,).e)

p(F(yy- - ¥y))

p(?(yl)...z(yn)), by definition of ¥

x_ ) )

z oo z
p( ( xy ) (f(xn)=y§

f(x1)=y1

T ... Z p(xy...x )
() ey TR

and this being just condition (2), the theorem is proved.

7. MARKOV CHAINS

We confine our attention to processes with statio-

nary transition probabilities only.

A process (Xn) is a first order Markov chain if

there is a map

4 + Sx§ —> R,

the transition matrix,'such that for any sequence

Xyy eeey X in 8§ ( S is the state-space of the process )

p(xl...xn) = t(xn_l,xn).p(xl...xn_l)
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wvhich, on iteration becomes

p(xl...xn) = p(xl)t(xl,xz)...t(xn_l,xn).

An equivalent version of this is
(3) qa(xy - t(x,y)x)e) = 0 for a in Ags X, y in 8,

The transition matrix is always taken non-negative and

stochastic, i.e., t(x,y) > 0 and I t(x,y) = 1.
y

Theorem 7. If (L,q,e) is a reduced sS-module then the
associated stochastic process is a 1-3t order Markov

chain iff for each x in S,

xL = Rlx e,

i.e., the image of L under each operator x in S is at

most one-dimensional.

Proof. Let p : AS —_ R1 be the process associated

with (L,q,e). If p is a Markov chain then (3) implies

that q vanishes on the submodule
As(xy - t(x,y)x)e.

Thus As(xy - t(x,y)x)e is a submodule in the kernel

of q. Since L is reduced this means
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As(xy - t{x,y)x)e = 0

or a(xy - t(x,y)x)e = 0 for all a in Ag.
Setting @ = 1, we get

xye = t(x,y)xe.
Using now the fact that L = Ase, we see that

xL & Rlxe for all x in S.
Obviously, xL 2 Rlxe. Hence xL = Rlxe.

1

Conversely, assume that for each x in S, xL = R xe.
Then, for x, y in S, we may write
xye = t(x,y)xe, for some t(x,y) in rl,
So we have for a in AS’
q(a(xy - t(x,y)x)e) =0,

which is condition (3). This completes the proof.

It should be noted that if x is a prohibited state,

then

xL = 0 = R}

xe., (Lemma 4)
This is the case when xL is of dimension zero. For

every non-prohibited x, xL is in fact one-dimensional.

Corollarv 1. If (L,q,e) is any sS—modu1e<gnd for each
x in S, dim xL < 1, then the associated stochastic
process is a l-st order Markov chain.

For, the reduced module will obviously share this

property. We call such modules Markovian.
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Corollary 2. A process induced from a l-st order Markov

chain has its reduced module finite dimensional (over Rl).
A stronger version of Corollary 2 can be obtained

as follows:
Suppose £ ¢ S —> T and denote by Ny’ for y in T,

the number of x such that £(x) = y.

Theorem 8. If (L',q',e') is the reduced sT-module of a
stochastic process induced by f from a l-st order Markov
chain on S, then for each y in T,
dim yL' < N_.
=Ty
This is essentially Gilbert's /8/ necessary condition,

(See Lemma 1 of Chapter I1I.)

In a straight forward manner we can generalize
these concepts to k-th order Markov chains. Details of
this generalizetion as well as some further interesting

results may be found in /10/.

8. PROCESSES INDUCED FROM MARKOV CHAINS

This section contains the main theorem of this
chapter (Theorem 15). Except for some minor details
our proof closely resembles the proof given by Heller
(/9/, Theorem 5.1). However, a few more results are

needed before we can actually prove the theorem.
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We define the regular module of a Markov chain
with transition matrix ¢ as follows:

Let L be a real vector space with a basis which is
in one-to-one correspondence with the elements of S.
If wve denote by X the basis vector which corresponds
to x in S in this bijection, then the basis of L is
(X :xin S8 ). L is necessarily finite dimensional.

Define an operation of AS on L by
x(y) = t(x,y) x, for x, y in S.

This way L may be regarded as a left As—module. Let

e = I X and define the linear functional q : L —> !

X
by

a(x) = plx).

The triple (L,q,e) now satisfies all the requirements
of an sS-module and is calied the regular module of the

Markov chain.,

Theorem 9. The process associated with (L,q,e) is p.

Proof. If x is in S, then

xe = I t(x,y) X = X, since I t(x,y) = 1.
y y
If X1y eees X is a sequence in S, then
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X,eeeX_ € XqeoeeX X Since ezi
1 n 1 n-1"n’ *n

n

xl...xn_zt(xn_l,xn) X 1

tlx 5% ) tx _5ox 1) oo t(xgrx5) X;.
Applying q to both sides, we get

q(xle..xne) = t(xl,xz) ces t(xn_l,xn) q(il)

p{xl) t(xl,xz) ces t(xn_l,xn), since q(il)
= P(xl)

1

p(xlxz...xn),
and this completes the proof.

Let V be a real vector space. By a convex cone

in V wve mean a subset C of V such that

X, yinC, ¢, 820 == o x + B y in C.

A convex cone C is strongly convex if

X, =X in C = x = O.

A convex cone C is polvhedral if it is the intersection

of finitely many half-spaces. A subspace WC V inter-

sects a convex cone C  V extremally if

X, yin C, x + y in ¥ = X, y in W.
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Lemma 10, If W C V is a subspace and C & V a strong-

ly convex cone then Wﬂ C is a strongly convex cone,
Proof. Obviously ¥ C is a convex cone. Also,

X, =X inWﬂC ===> X, =x in C
===> x = 0, since C is strongly
convex.

so WNc is strongly convex.

Lemma 11. I1f W V is a subspace and C & V a poly-
hedral cone, then so is VnC.

Proof. C is polyhedral. So it is the intersection of
finitely many half-spaces, each of which when inter-

sected with W is a half-space, Let

cC=C¢MN ... ﬂCn, vhere the C.'s are half-spaces.

Then

v{\c = (wﬂcl) (wﬂcn),

wvhich is agein the intersection of finitely many half-

spaces and hence is polyhedral.

Lemma 12, If W, W' ¢ V are subspaces and W' intersects
the cone C ¢ V extremally then also W{\ W' intersects
v \c extremally.
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Proof. Note that W [AVW' is a subspace. We have to
show that
X, yin W} C, x + y in WA W' => x, v in WO V"',
Let x, y in W\ C with x + y in WO\ W', Then
X+ y in ¥W' and x, y in C,
But W' intersects C extremally. So x, y in W'. Also
X, ¥y in W. Hence x, y in TR N AP

Lemma 13. I W & V is a subspace, j : V —=> V/V the

projection and C & V is a polyhedral cone then so is

j(c) < V/V.

Proof. Let C = le\ .o r\Cn, where the C.'s are half-

spaces. We have

j(C) =C + W

¢;N...Qlc + ¥

= (cp +WIN ... NMC +W¥)
ilepn . \Vice)

where each j(Ci) is a half-space. Being the inter-

li

section of finitely meny half-spaces, it follows that

the cone j(C) is polyhedral.

Lemma 14. I# W V is a subspece, j : V —= V/¥W the
projection, C  V a strongly convex cone and W inter-

sects C extremally, then j(C) is strongly convex.
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Proof. Let x, =x in j{(C) = C + W =(c + W : ¢ in C).

Then
x=c¢+W, =x=c¢'" +W¥W, ¢, ¢' in C.
Now,
O=x+(=x)=(c+¢'") +W==>c+c' =0
or ¢' = —c. Thus ¢, -c belong to C which is strongly
convex, and so ¢ = O. But then x = -x = W, the zero

element of V/W. Hence j(C) is strongly convex.

Theorem 15. Let (L,q,ej be a reduced sS-module. The

associated stochastic process is induced from a l-st
order Markov chain iff there is a convex cone CC_ L

such that
(i) e belongs to C,
(ii) a(w) = 0, ¥ in C,
(iii) C is invariant under Py, i.e., PgC < C, where
PS is the coordinate cone of AS’ consisting of

polynomials with non-negative coefficients,

and

(iv) C is strongly convex and polyhedral.

Proof. Suppose our process is induced by & map
f ¢« T —=3S8
from a 1l-st order Markov chain with regular sT-module

(Lﬁ,ql’el).
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This means the following:
The real vector space L' has basis (@ : @« in T ),
e' = I « and the operation of AT on L' is defined
o in T
by
B(a) = t'(B,ax) B, B, @ in T,

where t+' ¢: T x T —> Rl

is the transition probability
function; q' : L' —> R1 is defined by q'(a) = p'(a)
and if p is the process associated with (L,q,e), then

p(xl...xn) = b p'(al...an), vhere

X .o
f(a1)=x1 f(an)=xn

Ays eeey O belong to T.

We must produce a convex cone C { L having pro-

perties (i) - (iv) with respect to S.
Consider the convex cone C'(C L' defined by
C' = (k' inL' : qg'(k')>0).

It is easy to see that C' has, with respect to T, the

properties (i) - (iv). Consider now

the ring homomorphism given on the generators x in S
of AS by

?(x) = L oo .
f(a):x
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Then L'/T/ represents the left As-module having the
same underlying abelian group as that of L', scalar

multiplication being given by

a.k' = P(a). k' , @ in Ag , k' in L'.

qQ' : L'/?/ —> r! is again linear and e' belongs

to L'/¥/. So (L'/?/,q',e') is an sS-module and the
associated stochastic process is induced by f from

that associated with (L',q',e'). (See Section 6.)

Now let L; = Ag.e' = (cx.e'= P(ax).e' : a in AS).
Then L, is a submodule of L'/$/. Also C' is strongly
convex and polyhedral in L'. Therefore by lemmas 10

and 11, the cone Llf\ C' is strongly convex and poly-
hedral. Obviously,

e' is in Ly} C' and q'(#') = 0, 7' in Llﬂ c'.

Also,

PS.(Llﬂ c') = (Bg). (L, N C")
C Pp(, N C'), since 2(P) C Py
C,Ne.

Thus L1(] C' has properties (i) - (iv) with respect to S.
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Now, let N1¢: Ll be the largest submodule on which
q' vanishes. The quotient module Ll/Nl may be identi-
fied with L, with q', e' going into q, e respectively.
(Observe that two reduced sS-modules are isomorphically

unique. )

Now, N, intersects Ll(\ C' extremally. For,
suppose u, v be in Llf\ C' with u + v in Nl' Then for

any a belonging to Ps, we have that

o.u belongs to Ll(w C' and a.(u + v) belongs
to Nl’ so that

0<q'(e.u) < qg'(e.u + a.v) =q'(a.(u + v)) = 0.

Therefore,
q'(x.u) = O for any a belonging to Pg.
In particular, for @ = 1, we have q'(u) = O and conse-

quently, u is in Nl’ Similarly v also is in Nl;

Now LI(\ C' is a strongly convex and polyhedral
cone in Ll’ and Nl<:'Ll intersects Llfw C' extremally.
Therefore, if we take C as the image of Ll(\ C' in

L = Ll/Nl under the projection

j : L, —> Ll/N

1 1’
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then by lemmas 13 and 14, C is a strongly convex poly-
hedral cone in L. Obviously C also satisfies condi-
tions (i) - (iii). Thus C satisfies all the require-

ments.,

Conversely, let C € L be a convex cone satisfying
conditions (i) - (iv). Our task is to exhibit a l-st
order Markov chain such that the process associated

with (L,q,e) is induced from this Markov chain.

C being polyhedral, there exists a finite subset
U of C such that C is the convex hull of the rays
through the elements of U. Then, since e is in C, we
can write

e = . ) a, u, &, 2 0.
uin U

Also since Pg.C & C, we have for any x belonging to S
and u belonging to U,

Xx.u = z a!!nv v !

Buv =
v in V 77 u
Let T=8S xU={ (xyu) : xin S, u in U ) and let L'
be the (real) vector space with basis ( < x,u > ) in

bijective correspondence with T. We make L' into a

left AT-module by setting

(4) (x,u) < y,v> = 8 oy< Xou >, X, ¥ in 8, u, v in U.
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If n is the number of elements in S, we define
e' = n 7, L Ea.u<x,u>,
X in S,u in U

and determine q' ¢ L' —> Rl by q' < xy,u> = q(u).

Now, (4) shows that dim (x,u) L' < 1 for each
(x,u) in T, and so, by Corollary 1 to Theorem 7,
(L',q',e') is an sT-module whose associated process

is a 1-st order Markov chain.

Let £ : T —> S be the projection. We claim
that the process induced by f from the one just defined

is associated with (L,q,e). To see this define
g : LY —=>1L

as the linear extension of g < x,u> = u., Then

g(e') = a7l z La u
X in S,u in U
=n_1. Ze
x in S
-1
=1n . N e = e .

qog<zx,u>=gq(g<x,u>)

q(u)
=q' < x,u>.

Therefore q o g = q'.



Further, g : L'/2/ —= L is a morphism of the Ag~ mo
les L'/?/ and L. For, if x is in S, then

g(x. < y,v>)

8(2(1) <y,w >)
g( £ (x,u) < y,v>)
ueU

= g EUaxvu<?‘x,u >)
u

La g < x,u>
xvu
weu

“les

z o= XIv o= X.g<y,v>.

Gyvia
uelU

Thus g is a morphism of sS-modules and so the associated

processes are the same. This completes the proof of the

theoren,

AN EXAMPLE

Applying the criterion of Theorem 15 Heller /9/ has
constructed a process which is not induced from a Markov
chain. The details of this construction may be found in
his paper{/9/, Section 6). We give below the construct-
ion of a process which is induced from a Markov chain.

(We follow the notations of Theorem 15).

Let L be the gRiclidean plane with basis ( (1,0),
(0,1) ). Let e = (1,0) and let q be the inner product
with e so that q(e) = 1. For S we takt the set of two

elements x , y and make L into an As—module as follows:

89

du-



920

x acts on L as a.ry where ry is the orthogonal proje-
ction on the line L1 through the origin with slope tanf, .~
and y acts on L as a.r, where r, is the orthogonal projé—
ction on the line L2 through the origin with slope - tanB,
where B8 is some positive angle less than 45° and aéRl is
chosen so that o e § (x + y) e = e. Simple calculations
give a = 1/(200526). As can be easily seen, (L,q,e) is

then an irreducible sS-module.

Consider the convex cone C CL formed by the two lines
L1 and L2 restricted to the l-st and 3-rd quadrants respe-
ctively. Then C satisfies conditions (i) = (iv) of Theo-
rem 15. Therefore there exists a l-st order Markov chain
such that the process associated with (L,q,e) is induced
from this Markov chain. Straight forward calculations
show that the process p associated with (L,q,e) has ini-

tial distribution (1/2, 1/2) and transition matrix
a l -0
l‘a ¢ 4 .
For U let us take the set consisting of the two vect-
ors u = (00528 , cosB.sinB) = (1/(2a) , 1/(2a) - 1/2)

and v = (coszﬂ , = cosB.sinB) = (1/(2a) , 1/2 - 1/(2a)).

Then &, = 8, = 0, and & = @ =a, a = a =1 - «,

uu yvv Xxvu - “yuv

o <

and a = = a = a = 0,
xuv XVV yvu yuu




91

Now, T = ( (x,u), (x,v), (y,u), (y,v) ). Let L' be
the real vector space with basis ( < s,t > ) in bijective
correspondence with T, We make L' into a left AT-module
by setting

(8,t) < s',t'"™> = a 41y < SHt>, 5, s'€ 85, 1, t'ETU.
Define

e!' = —g—- (<x,u> + <x,v> + <y, + <y,v> )

and determine

qQ' : L' —> r! by q" < s,t > = q(t).
Then (L',q',e') is an sT-module whose associated process
p' is a l-st order Markov chein with state-space T ahd
the process p is induced from p' by the projection
£ : T —=>S. The initial probability distribution of
this Markov chain is (1/2 , 0, 0, 1/2). So the probable

starting states are omly {x,u) and (y,v), and the corres-

ponding transition probabilities are

P( (qu)/(xyu) )
and P( (y,v)/(x,u) )

1l
=]

P( (y,v)/(y,v) )
P( (x,u)/(y,v) )

l - c.
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